

Control and management of storage elements in micro-grids

IRP2.2

Unnikrishnan Raveendran Nair

Early Stage Researcher, PhD Candidate - UPC Barcelona Advisor- Prof.Ramon Costa Castelló

Contents

- Motivation
- Overview of storage systems
- Areas of focus
- Thesis objective
- System schematic
- Converter control
- Primary + secondary control
- Current status

Motivation

Electrical energy storage for increased penetration of renewable sources by ensuring:

- Power balance
- Energy security
- Stiffer grids
- Power quality improvement
- Ride through capability

Overview of electrical storage systems

Classification of different electrical storage systems(ESS)

- Supercapacitors
- **Flywheels**
- Superconducting magnetic storage

- Regenerative fuel cell
- Pumped hydro storage
- Compressed air storage
- Large scale battery
- Thermal energy storage

Overview of electrical storage systems

Regenerative FC

Features:

- Very high energy density
- Lifetime of more than 20000 hours for stationary application
- Can be subjected only to low rate of change of load due to accelerated degradation
- Low round trip efficiency(30-40%)
- Very low self discharge

Features:

- High energy density
- Lifetime in the range of 10000 cycles
- Can be subjected to higher rate of change in output than FC
- High round trip efficiency of close to 90%
- Very low self discharge

Supercapacitor

Features:

- High power density
- Lifetime of more than 1,000,000 cycles
- Very high rate of change of power output deliverability
 - High round trip efficiency of 90%
- Significant self discharge

Areas of focus

- How can the energy be distributed/supplied by the ESS to achieve minimum rate of degradation?
- How to effectively consider the stochastic nature of load and generation profiles?
- How to effectively integrate multiple microgrids into the grid taking advantage of the functionalities ESS can provide?

Thesis objective

Develop and implement a control architecture for an ESS based DC-microgrid which

- aids the increased penetration of RES at all instances by ensuring an energy balance in the grid
- solves an optimum power flow problem for profit maximisation in microgrid by energy interaction with main grid
- minimise rate of degradation of ESS through optimal distribution of energy among different ESS.
- The proposed control system should be able to achieve all this considering the stochastic nature of the generation and load profiles.

Thesis objective

System schematic

Converter control

PI+CI Reset control

$$PI + CI = \begin{cases} \dot{\rho}_{\mathbf{r}}(\mathbf{t}) = 0, \dot{\mathbf{x}}_{\mathbf{r}}(\mathbf{t}) = \mathbf{A}_{\mathbf{r}}\mathbf{x}_{\mathbf{r}}(\mathbf{t}) + \mathbf{B}_{\mathbf{r}}e(t), & e(t) \neq 0 \\ \rho_{r}(t^{+}) = \mathcal{P}(\mathbf{x}_{\mathbf{r}}, e(t)), \mathbf{x}_{\mathbf{r}}(\mathbf{t}^{+}) = \mathbf{A}_{\rho}\mathbf{x}_{\mathbf{r}}(\mathbf{t}), & e(t) = 0 \\ u(t) = \mathbf{C}_{\mathbf{r}}(\rho_{\mathbf{r}}(\mathbf{t}))\mathbf{x}_{\mathbf{r}}(\mathbf{t}) + \mathbf{D}_{\mathbf{r}}e(t) \end{cases}$$

Design objectives

- Define reset ratio
- Define resetting law to obtain reference tracking and disturbance rejection
- Ascertain the robustness of the controller

Converter control

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No 675318

Converter control

 Describing function of reset controller used for robustness analysis

$$PI + CI(\omega) = k_p \frac{j(w\tau_i + \frac{4}{\pi}\rho_r) + 1}{j\omega\tau_i}$$

Primary + secondary control

- Developing an adaptive disturbance rejection based control for disturbance rejection and voltage regulation of microgrid.
- Frequency based power splitting for power distribution among ESS

Current status

- Developed simulations models for the ADRC based control with testing and validation to proceed.
- Expanding the setup to incorporate battery system along with designing of converter and data acquisition systems.
- Presented thesis proposal on February 14,2018.
- Conference paper accepted for the American Control Conference-2018.
- Journal and conference paper under review in Control system technology and PID control conference.
- First secondment in EFACEC, Porto in summer 2018

Email: uraveendran@iri.upc.edu

